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Abstract
Invariance properties describe the fundamental physical laws in discrete
mechanics. Can those properties be described in a geometric way? We
investigate an exterior difference system called the discrete Euler–Lagrange
system, whose solution has one-to-one correspondence with solutions of
discrete Euler–Lagrange equations, and use it to define the first integrals. The
preservation of the discrete symplectic form along the discrete Hamilton phase
flows and the discrete Noether’s theorem is also described in the language of
difference forms.

PACS numbers: 02.40.Ma, 02.40.Gh, 02.40.Yy, 02.10.De
Mathematics Subject Classification: 52C99, 81T75, 03G10

1. Introduction

In recent years, there has been a substantial growth of interest in discrete mechanics
[2–13, 19]. In this renascent field, invariance properties such as desirable symmetry also
describe the fundamental physical laws and exhibit many geometric properties such as the
conservation laws as the continuous mechanics. It should be an interesting problem to describe
those properties in a geometric way. In continuous mechanics, it is well known that utilizing
techniques from exterior differential systems such as the derived flag and prolongation allows
a systematic treatment of the variational principles in greater generality than customary and
sheds new light on even the classical Noether’s theorem [1]. Naturally, we consider how to
apply the techniques in discrete differential geometry and exterior difference systems [13–18]
to the discrete variations in discrete mechanics:
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• A difference 1-form called discrete Poincáre–Cartan integral invariant is investigated,
which preserves the discrete Hamilton phase flows. This form can derive the discrete
symplectic form, which is equivalent to the form given by Wendlandt and Marsden [11],
if the space variables are continuous (section 3).

• The discrete Euler–Lagrange system is investigated here, whose solution has one-to-
one correspondence with solutions of discrete Euler–Lagrange equations. A remarkable
application of this system is deriving the discrete Hamilton equations (section 4).

• The discrete Euler–Lagrange system can define the first integrals of discrete Euler–
Lagrange equations. We described the discrete Noether’s theorem in the language of
difference forms and show that this theorem can derive Marsden and West’s results [10]
(section 5).

The first author wishes to thank professors Wu and Guo for many valuable suggestions
concerning the various contents of this paper. The readers can also find some motivation in
their theory [13] about discrete exterior calculus. There are two approaches to discrete exterior
calculus. One approach to consider the discrete mesh as the only given thing and developing
an entire calculus using only discrete combinatorial and geometric operations [17]. Another
approach is to approximate a smooth exterior calculus and to consider the given mesh as
approximating some smooth manifold at least locally, and then defining the discrete operators
by truncating the smooth ones. The derivations may require that the objects on the discrete
mesh, but not the mesh itself, are interpolated. It is this latter route that Wu et al have taken
and this leads to a discrete exterior calculus.

2. Preliminaries

In this section, we recall some concepts in exterior difference systems and discrete variational
problems [10, 13–19], which are used in this paper.

2.1. Exterior difference operator

We denote Zm = {(xi)} by a regular lattice Zm = Z × Z × · · · × Z︸ ︷︷ ︸
m

with coordinates

{(x1, . . . , xm)}, where Z is a ring of integers.
Let �i be a difference operator in the direction of xi such that

�ig(x1, . . . , xm) = Eig(x1, . . . , xm) − g(x1, . . . , xm),

where

Eig(x1, . . . , xm) = g(x1, . . . , xi + 1, . . . , xm),

and g is an R-valued function on Zm,R is the field of real numbers.
The discrete tangent space at the node p ∈ Zm is

TpZm := R ⊗ {�i |p, i = 1, . . . , m},
The discrete tangent bundle is

T Zm :=
⋃

p∈Zm

TpZm

The dual spaces of them are called discrete tangent and cotangent bundles, denoted by

T ∗
p Zm := R ⊗ {dDxi |p, i = 1, . . . , m}, T ∗Zm :=

⋃
p∈Zm

T ∗
p Zm,
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where dDxi satisfies

〈dDxi,�j 〉D := �j(x
i) = δi

j .

Sections on T Zm and T ∗Zm are called discrete tangent vector fields and difference
1-forms, respectively. In this paper, we denote the set of sections of any discrete bundle
* by �∗. As in the differential case, we can construct the exterior difference forms
algebra [13]

�∗ = ⊕n∈Z�n,

where �n is a set of difference n-forms

K ⊗ {dDxj1 ∧ · · · ∧ dDxjn |j1, . . . , jn ∈ 1, . . . , m},
where K is a ring of R-valued functions on Zm and ∧ is the anticommutative product.

The exterior difference operator dD : �k → �k+1 is defined as

dDw =
m∑

i=1

�ihdDxi ∧ dDxj1 ∧ · · · ∧ dDxjk ,

where w = hdDxj1 ∧ · · · ∧ dDxjk . The dD should satisfy the Leibnitz law and d2
D = 0 [13].

So we have

dDxih = EihdDxi, dDxi ∧ dDxj = −dDxj ∧ dDxi.

2.2. Exterior difference systems

Let Zm × Rn = {(xi, ui)} be a discrete vector bundle on Zm, where xi and ui are coordinates
of Zm and Rn, respectively. Consider a section f ,

ui = f i(x1, . . . , xm), 1 � i � n.

Define the map f ∗ : ∧T ∗f (Zm) → ∧T ∗Zm as follows:

f ∗dDui1 := dD(ui1 ◦ f )

f ∗(hdDui1 ∧ · · · ∧ dDuir ) := (h ◦ f )f ∗dDui1 ∧ · · · ∧ f ∗dDuir .

The f ∗ is a linear map and commutes with ∧ and dD , called the discrete cotangent map
of f [18].

The dual map of f ∗ is called discrete tangent map, denoted by f∗. So we can define⎛⎝�u1

· · ·
�un

⎞⎠ :=
⎛⎝�1u

1 · · · �1u
n

· · · · · · · · ·
�mu1 · · · �mun

⎞⎠−1 ⎛⎝�1

· · ·
�m

⎞⎠ .

For any a ∈ Zm × Rn, we define

T (Zm × Rn)a := R ⊗ {�i |a,�uj |a|i = 1, . . . , m, j = 1, . . . , n}
T (Zm × Rn) :=

⋃
a∈Zm×Rn

T (Zm × Rn)a

T ∗(Zm × Rn)a := R ⊗ {dDxi |a, dDuj |a|i = 1, . . . , m, j = 1, . . . , n}
�̃k|a := T ∗(Zm × Rn)a ∧ · · · ∧ T ∗(Zm × Rn)a︸ ︷︷ ︸

k

�̃∗ :=
⊕
k∈Z

(
⋃

a∈Zm×Rn

�̃k|p).

Now we can give the exterior difference system as a local approximation of exterior
differential system.

3
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Definition 2.1.

(1) A subring of I ⊂ ��̃∗ is called a right ideal, if:

(a) α ∈ I implies α ∧ β ∈ I for all β ∈ ��̃∗.
(b) α ∈ I implies that all its components in ��̃∗ are contained in I.

(2) An exterior difference system is given by a right ideal I ⊂ ��̃∗ that is closed under dD .
(3) An integral lattice of the system is given by a section f : Zm → Zm × Rn such that

f ∗θ = 0 for all θ ∈ I .

This system can include all the local ordinary and partial difference equations on a regular
lattice, if introducing the discrete jet bundle on a regular lattice.

Definition 2.2. Let Zm × Rn = {(xi, ui)} be a discrete vector bundle on Zm and
�k

i1···ik = �i1 · · · �ik . The discrete k-jet bundle of this bundle is a discrete vector bundle
with coordinates{(

xi, uj ,�iu
j , . . . ,�k

i1···ik u
j
)}

, 1 � i, i1, . . . , ik � m, 1 � j � n,

denoted by J k
Dα.

In the similar way as Beauce et al did [14], we can define the discrete contract operator iY ,

iY w :=
m∑

j=1

f
∑
j=is

(−1)sdDxi1 ∧ · · · ∧ ˘dDxis ∧ · · · ∧ dDxikY j ,

where Y = Y i�i ∈ T Zm,w = f dDxi1 ∧ · · · ∧ dDxik ∈ �k . If w is a difference 1-form, then
we denote iY w by 〈w, Y 〉D .

Using the Cartan formula, we define the discrete Lie derivative operator

LXω := iXdDω + dDiXω.

More information about those or the similar operators can be found in [10, 13–18].

2.3. Discrete variational problem

Let

I = {θ1, . . . , θk|θ i ∈ �T ∗(Z × R2n)}
be an exterior difference system and V (I) be the set of integral lattice of I. For each
ϕ ∈ �T ∗(Z × R2n) and f ∈ V (I), we set


(Z, f ) =
∑
t∈Z

〈f ∗ϕ,�t 〉D

be an R-valued function on lattice Z.
Consider a subset of discrete vector bundle

Z2n+1 × R2n = {(t, si, xi, qi, q̇i)}
such that

qi(si, t) = si + qi(t)|t �=±∞, qi(si,±∞) = qi(±∞), qi(xi, t) = qi(t)

q̇i(xi, t) = xi + q̇i (t)|t �=±∞, q̇i(xi,±∞) = q̇i (±∞), q̇i(si, t) = q̇i (t).

So we can extend I and ϕ to this subset, still denote by I and ϕ. In this paper, we omit some
pull back and extended maps for simple. We always extend the forms to the extended bundle
and pull back them after calculating.

4
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We denote by (I, ϕ) the discrete variational problem associated with the function

(Z, f ), f ∈ V (I). The associated discrete Euler–Lagrange equations are

f ∗(ivdD(ϕ + θαλα)|Z×R2n ) = 0, (1)

for any v ∈ �(T Z2n+1) such that �v(q
i ◦ f )|±∞ = 0.

3. Discrete symplectic structure

Let Z2n+1 × R2n = {(si, wi, t, qi, pi)} be a discrete vector bundle and

ω1 = dDqipi − H(t, Etp
i, qi)dDt, summation,

where qi(si, t) = si + qi(t), pi(wi, t) = wi + pi(t).
The discrete curve f on Z × R2n = {t, qi, pi} such that

i�t
f ∗dDω1|Z×R2n = 0

is called the vortex line of the form ω1.

Theorem 3.1. The vortex line of the form ω1 on the Z2n+1 ×R2n satisfies the discrete Hamilton
equations [19]

ṗi = −Hqi (t, Etp
i, qi), q̇i = HEtpi (t, Etp

i, qi), (2)

where

HEtpi (t, Etp
i, qi) := �wi H(t, Etp

i(t, xi), qi(t))|wi=0

Hqi (t, Etp
i, qi) := �si H(t, Etp

i(t), qi(t, si))|si=0,

ṗi = �tp
i and q̇i = �tq

i .

Proof. The exterior difference of the form ω1 is

dDω1 = dDqi ∧ dDpi − dDH(t, Etp
i, qi) ∧ dDt

= dDsi ∧ dDwi + (ṗi + Hqi )dDt ∧ dDsi + (q̇i − HEtpi )dDwi ∧ dDt.

Thus the integral lattice of (2) is the vortex line of the form ω1. �

The vortex line of ω1 is also called discrete Hamiltonian phase flows. Let γ be a discrete
curve on Z2n × R2n × t0 = {(si, xi, qi, pi, t0)}. Since∑

γ

i�si
Etω

1|t=t0 −
∑

γ

i�si
ω1|t=t0 =

∑
γ

−i�si
i�t

(�tω
1 ∧ dDt)|t=t0

=
∑

γ

i�si
i�t

(dDω1)|t=t0∑
γ

i�wi
Etω

1|t=t0 −
∑

γ

i�wi
ω1|t=t0 =

∑
γ

−i�wi
i�t

(�tω
1 ∧ dDt)|t=t0

=
∑

γ

i�wi
i�t

(dDω1)|t=t0 ,

so the discrete Hamiltonian phase flows preserve the integral of dDqipi over the discrete
curves on Z2n × R2n = {(si, wi, qi, pi)}. So we call the difference 1-form ω1 the discrete
Poincáre–Cartan integral invariant.

If γ is closed discrete curve (connected by links), then there is a two-dimensional oriented
chain σ such that γ = ∂σ (use the notation in general case). As in the differential case, we
call difference 2-form

ω2 = dDqi ∧ dDpi

the discrete symplectic structure.

5
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From the discrete Stokes formula, we have∑
σ

i�wi
i�si

(dDqi ∧ dDpi) =
∑

γ

i�si
ω1 −

∑
γ

i�wi
ω1.

Hence the discrete Hamiltonian phase flows preserve the integral of the oriented sublattice in
Z2n × R2n. In other words, ω2 is an absolute integral invariant of the discrete Hamiltonian
phase flows.

Further, the interested reader would probably benefit from a detailed description of the
relationship of ω2 and discrete symplectic structure given by Marsden and Wendlandt [11].

Let Zn+1 × R2n = {(si, t, qi, q̇i)} be a discrete vector bundle on Zn+1 and q̇i (si, t) =
si + q̇i (t). If si, xi are continuous variables then

Lq̇i(εsi ,t)|wi=0 := L(t, qi(t), q̇i(ε, t)) − L(t, qi(t), q̇i(t))

ε

Lqi(εsi ,t)|si=0 := L(t, qi(ε, t), q̇i (t)) − L(t, qi(t), q̇i(t))

ε
.

Since

q̇i (εsi, t) = q̇i (t) + εsi

= (qi(t + 1) + εsi) − qi(t)

= qi(εsi, t + 1) − qi(t)

and �si q̇i(εsi, t) = �si qi(εsi, t + 1) = ε, so

D2L(qi(t), qi(t + 1)) = lim
ε→0

�si L(qi(t), qi(εsi, t + 1))

ε

∣∣∣∣
si=0

= lim
ε→0

�si L(qi(t), q̇i(εsi, t))

ε

∣∣∣∣
si=0

= lim
ε→0

Lq̇i(εsi ,t)

∣∣∣∣
si=0

lim
ε→0

Lqi(εsi ,t)|si=0 = lim
ε→0

�si L(qi(εsi, t), qi(εsi, t + 1))

ε

∣∣∣∣
si=0

= lim
ε→0

�si L(qi(εsi, t), qi(ε, t + 1))

ε

∣∣∣∣
si=0

+ lim
ε→0

�si L(qα(t), qα(εsi, t + 1))

ε

∣∣∣∣
si=0

= D1L(qi(t), qi(t + 1)) + lim
ε→0

Lq̇i(εsi ,t)|si=0

D12Ldqi(t) ∧ dqj (t + 1)|t=t0 = ∂2L(qi(t), qj (t + 1))

∂qi(t)∂qj (t + 1)
dqi(t) ∧ dqj (t + 1)|t=t0

= ∂2L(qi, qj )

∂(qi − q̇i )∂q̇j
dDqi ∧ dD(q̇j + qj )|t=t0

= ∂2L(qi, qj )

∂qi∂q̇j
dDqi ∧ dDq̇j |t=t0

+
∂2L(qi, qj )

∂qi∂q̇j
dDqi ∧ dDqj |t=t0

− ∂2L(qi, qj )

∂q̇i∂q̇j
dDqi ∧ dDq̇j |t=t0 .

6
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Recall the discrete Euler–Lagrange equations [19]

�tE−tLq̇i = Lqi , (3)

where

Lq̇i := �si L(t, qi(t), q̇i(si , t))|si=0

Lqi := �si L(t, qi(si, t), q̇i (t))|si=0

and the equations derived from discrete Legendre transformation

Hqi = −Lqi , q̇i = HEtpi , Etp
i = Lq̇i , (4)

we have

dDqi ∧ dDpi |t=t0 = dDqi ∧ dDE−tLq̇i |t=t0

= dDqi ∧ dD

(
∂L(qi, qj )

∂qi
− ∂L(qi, qj )

∂q̇i

) ∣∣∣∣
t=t0

= dDqi ∧
(

∂2L(qi, qj )

∂qi∂qj
dDqj +

∂2L(qi, qj )

∂qi∂q̇j
dDq̇j

) ∣∣∣∣
t=t0

− dDqi ∧
(

∂2L(qi, qj )

∂q̇i∂qj
Lq̇iqj dDqj +

∂2L(qi, qj )

∂q̇i∂q̇j
dDq̇j

) ∣∣∣∣
t=t0

= ∂2L(qi, qj )

∂qi∂q̇j
dDqi ∧ dDq̇j

∣∣∣∣
t=t0

+
∂2L(qi, qj )

∂qi∂q̇j
dDqi ∧ dDqj

∣∣∣∣
t=t0

− ∂2L(qi, qj )

∂q̇i∂q̇j
dDqi ∧ dDq̇j

∣∣∣∣
t=t0

.

So ω2 is equivalent to D12Ldqi(t) ∧ dqj (t + 1).
From a simple example, we show the discrete Euler–Lagrange equations’ relationship

with the symplectic Euler schemes.

Example 3.2. For the system of harmonic oscillator we have

L =
q̇i∑
0

miq̇ihq̇i −
qi∑
0

kqihqi

= 1

2
miq̇i(q̇i − hq̇i ) − 1

2
kqi(qi − hqi )

H = L − q̇iLq̇i

= −1

2
miq̇i(q̇i + hq̇i ) − 1

2
kqi(qi − hqi )

= −1

2
Etp

i(
Etp

i

mi
+ hq̇i ) − 1

2
kqi(qi − hqi )

∼= −1

2

Etp
i

mi
(Etp

i − hpi ) − 1

2
kqi(qi − hqi ),

where h∗ is the equal footing of *.

The corresponding Euler–Lagrange and Hamilton equations are

miq̈i = kEtq
i

⎧⎨⎩
ṗi = −kqi

q̇i = Etp
i

mi
.

7
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Both of them are equivalent to⎧⎪⎨⎪⎩
Etp

i = −kqi + pi

Etq
i = −

(
k

mi

+ 1

)
qi +

pi

mi

,

whose coefficient matrix is symplectic.

4. Discrete Euler–Lagrange system

As in the differential case, we want to write the discrete Euler–Lagrange equations (1) as an
exterior difference system on a proper discrete bundle. This construction will hopefully help
to clarify the role of the functions λi to be determined. Now we follow the Griffiths’ method
in differential case [1] to do that job.

On a subset of Z3n+1 × R3n = {(si, xi, wi, t, qi, q̇i , λi)} such that

qi(si, t) = si + qi(t)|t �=±∞, qi(si,±∞) = qi(±∞), qi(xi, t) = qi(wi, t) = qi(t)

q̇i(xi, t) = xi + q̇i (t)|t �=±∞, q̇i(xi,±∞) = q̇i (±∞), q̇i(si , t) = q̇i (wi, t) = q̇i (t)

λi(wi, t) = wi + λi(t)|t �=±∞, λi(wi,±∞) = λi(±∞), λi(si, t) = λi(xi, t) = λi(t),

suppose we are given a closed 2-form ψ = dD(ϕ+θ iλi) with the associated exterior difference
system generated by the set of 1-forms

ivψ, ∀v ∈ �(T Z3n+1).

Denote by C(ψ) the exterior difference system generated by the collection of 1-forms
ivψ restricting on Z × R3n = {(t, qi, q̇i , λi)}.
Theorem 4.1. The solutions to the discrete Euler–Lagrange equations (1) are in a natural
one-to-one correspondence with the integral lattice of C(ψ), which is called the discrete
Euler–Lagrange system of ψ .

Proof. Let f be an integral lattice of I. Then we may determine functions λi(t) in (1).
Associated with f and the functions λi(t) is a discrete curve f̃ ∈ Z × R3n such that πf̃ = f ,
where π : Z × R3n = {(t, qi, q̇i , λi)} → Z × R2n = {(t, qi, q̇i)}. We claim that f̃ is an
integral lattice of C(ψ). In fact

dD(ϕ + θ iλi) = dDϕ + dDθiλi + θ i ∧ dDλi.

It will suffice to show that

i�wi
(dDϕ + dDθiλi + θ i ∧ dDλi)|f̃ = 0. (5)

But clearly

i�wi
(dDϕ + dDθiλi + θ i ∧ dDλi) = −θ i, (6)

so that (5) follows form θ i |f = 0.
Conversely, let f̃ be an integral lattice of C(ψ) with the projection π(f̃ ) = f ∈

Z2n+1 × R2n. Then from (6) it follows that f is an integral lattice of I. Moreover, the
conditions

ivdD(ϕ + θ iλi)|f̃ = 0 for v ∈ �(T Z2n+1) = �(T Z3n+1)

are just the (1) for f . �

Example 4.2. Consider discrete 1-jet bundle of Z × Rn = {t, q1, . . . , qn} and let L be a
function on J 1

D(Z × Rn).

8
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We set ϕ = L(t, qi, q̇i)dDt and take I = {dDqi − q̇idDt}. Using{
ϕ = L(t, qi, q̇i)dDt

θ i = dDqi − q̇idDt.

From

ivψ = iv(Lqi dDsi ∧ dDt + Lq̇i dDxi ∧ dDt + dDθiλi + θ idDλi)

= iv(Lqi dDsi ∧ dDt + Lq̇i dDxi ∧ dDt + dDxi ∧ dDtλi + θ idDλi)

and v = �si ,�wi ,�xi , we obtain the discrete Euler–Lagrange system⎧⎨⎩
(Lq̇i − Etλi)dDt = 0
(Lqi − �tλi)dDt = 0
dDqi − q̇idDt = 0.

A remarkable application of the discrete Euler–Lagrange system is deriving the discrete
Hamilton equations.

We have

ψ = (L − q̇iEtλi)dDt + dDqiλi.

Letting H(qi, q̇i , Etλi, t) = L − q̇iEtλi be a function on Z × R3n, we consider the
discrete Euler–Lagrange system for the 2-form dDψ ,

iv(Hsi dDsi ∧ dDt + Hwi dDwi ∧ dDt + Hxi dDxi ∧ dDt − dDqi ∧ dDλi),

where v ∈ �(T Z3n+1) = �({�si ,�wi ,�xi ,�t }). By contraction with the generated elements
of �(T Z3n+1), we find that C(ψ) is generated by⎧⎨⎩

Hxi dDt = 0
Hwi dDt − dDqi = 0
dDλi + Hsi dDt = 0.

From the first equation, we can see that H is independent of xi . It is also possible to write
λi = pi , which we may recognize as discrete Legendre transform and H the discrete Hamilton
function. Letting Hqi := Hsi ,HEtλi

:= Hwi and Hq̇i := Hxi , we see that the solutions of
C(ψ) satisfy the discrete Hamilton’s equations [19]{

ṗi = −Hqi (t, Etp
i, qi)

q̇i = HEtpi (t, Etp
i, qi).

5. Discrete Noether’s theorem

We consider a discrete variational problem (I, ϕ) given by the functional


(Z, f ) =
∑
t∈Z

〈f ∗ϕ,�t 〉D,

where f ∈ V (I) is an integral lattice of the difference system I on discrete jet bundle of
Z × R2n.

Definition 5.1. A first integral of the discrete variational problem (I, ϕ) is given by a function
V defined on Z × R2n = {(t, qi, q̇i )} such that V is constant on the integral lattice of C(ψ).

The condition that V be constant on integral lattice of C(ψ) is equivalent to

dDV = 0 mod C(ψ).

9
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Continuous first integrals arose as conserved quantities for mechanical systems. In the
discrete case, there are some new features. The energy of the system cannot be kept conserved
discretely if the time step length is fixed [9]. We will discuss this and several examples later.
For the moment we pause to give a further

Definition 5.2. Let (I, ϕ) be a variational problem on Z ×R2n. Given functions U,V defined
on Z × R2n their discrete Poisson bracket [U,V ]D is the function on Z × R2n defined by

[U,V ]Dψ ∧ (dDψ)n = dDU ∧ dDV ∧ ψ ∧ (dDψ)n−1

on Z2n+1 × R2n.

By direct computation, we can show that the discrete Poisson bracket is like in the differential
case

[U,V ]D = Uqi Vq̇i − Vqi Uq̇i ,

where

Uqi := Esi U(qi, q̇i , t) − U(qi, q̇i , t), Vqi := Esi V (qi, q̇i , t) − V (qi, q̇i , t),

Uq̇i := Exi U(q̇i , q̇i , t) − U(qi, q̇i , t), Vq̇i := Exi V (qi, q̇i , t) − V (qi, q̇i , t).

The importance of the discrete modified Poisson brackets lies in the following observation:

Theorem 5.3. If U,V are each first integrals of (I, ϕ) and �tϕ = 0, then so is their discrete
Poisson bracket [U,V ]D .

Proof. Let f be the discrete integral lattice of C(ψ) on Z × R2n. Saying that U is a first
integral is equivalent to

L�tU = �tU = 0.

Since L�t
dDU = dDL�t

U , if U and V are each first integrals it follows that

L�t
dDU ∧ dDV ∧ ψ ∧ (dDψ)n−1 = (i�t

dD + dDi�t
)dDU ∧ dDV ∧ ψ ∧ (dDψ)n−1

= dD(dDU ∧ dDV ∧ i�t
ψ ∧ (dDψ)n−1)

= dDU ∧ dDV ∧ �tψ ∧ (dDψ)n−1

= 0.

So

�t [U,V ]Dψ ∧ (dDψ)n = L�t
[U,V ]Dψ ∧ (dDψ)n

= L�t
dDU ∧ dDV ∧ ψ ∧ (dDψ)n−1

= 0.,

which implies that �t [U,V ] = 0. �

A major source of first integrals is provided by invariant movement of variational problems.
To explain this we need the following:

Definition 5.4. An invariant movement of discrete variational problem (I, ϕ) is given by a
discrete vector field v on Z2n+1 = {(t, si, xi)} that satisfies

LvI = 0 Lv(ϕ) = 0 mod I. (7)

If v = Ai�si + Bi�xi + C�t , these conditions are equivalent to

EAisi+Bixi+Ct I = I EAisi+Bixi+Ctϕ = ϕ mod I.

10
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Example 5.5. If the invariant movement induces by v = �si , then condition (7) is equivalent
to

L(t, qi(t, si), q̇i(t)) = L(t, qi(t), q̇i(t)),

which is also called L admit the discrete variation [19].

In fact L�si
(dDqi − q̇idDt) = 0 and L�si

LdDt = 0. More directly,

dD(qi + si) − q̇idDt = dDqi − q̇idDt

L(t, qi(t, si), q̇i(t))dDt = L(t, qi(t), q̇i(t))dDt.

The v can induce a discrete vector field ṽ on Z3n+1 = {(t, si, xi, wi)} by the product
structure. Now we give the main result of this paper

Theorem 5.6. Discrete Noether’s theorem. If v induces an invariant movement of (I, ϕ), then
the function V = ĩvψ is a first integral of the discrete variational problem.

Proof. By discrete Cartan’s formula

dDV = dD(ĩvψ) = Lṽψ − ĩvdDψ.

By the very definition of C(ψ)

ĩvdDψ ∈ C(ψ),

while on the other hand since

i�wi
dDψ = θα

we have I ⊂ C(ψ). Combining these gives dDV ∈ C(ψ). Here we omit some pull back and
extended maps. �

We note that discrete Noether’s theorem used here is a local form. But we will see that
the theorem in this form has it own merit from the following examples.

Example 5.7. If

ψ = L(qi(t), q̇i(t), t)dDt + (dDqi − q̇idDt)Lq̇i

and

ṽ = Ai�si + Bi�xi + C�t,

then

ĩvψ = CL + AiLq̇i .

We have discussed that i�si
ψ = Lq̇i , which is equivalent to the discrete Noether’s theorem

given by Marsden and West [10, 19]. More precisely, we want to point out one further easy
source of first integrals.

Definition 5.8. If the variable qi does not appear in the discrete Lagrangian of (I, ϕ), then
qi is called a cyclic coordinate.

In this case, the discrete vector field �si gives an invariant movement of the corresponding
variational problem with first integral Lq̇i . Actually, for this we do not need discrete Noether’s
theorem, it is clear from the discrete Euler–Lagrange equations.

In continuous case, we know that if the Lagrangian L is independent of time t, then
the Hamiltonian H is a first integral. But this is not always true in discrete case, unless

11
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ṽ = qi�si − �t induces an invariant movement of the variational problem (I, ϕ). In fact, the
discrete Noether’s theorem gives the first integral

V = iq̇i�si −�t
(LdDt + (dDqi − q̇idDt)Lq̇i )

= −L + EtLq̇i q̇i

= H.

Now we consider a detail problem by above methods.

Example 5.9. In R3 with cylindrical coordinates (r, ω, z) the numerical approximation of a
particle’s movement on a surface of revolution given by z = f (r) with little discrete time �t

is

�s2 = (1 + �f (r)2)�r2 + r2�ω2

= F(r)�r2 + r2�ω2

where the second equation defines F(r).

Let h∗ be the footing of ∗, ṙ = �r
�t

and ω̇ = �ω
�t

. The discrete Lagrangian has the form

L = m

√
F(r)ṙ2 + r2ω̇2(

√
F(r)ṙ2 + r2ω̇2 − hv)

2
+ U(r)

∼= m
F(r)ṙ2 + r2ω̇2

2
− hv

√
F(r)ṙ + rω̇

2
+ U(r)

∼= m
F(r)ṙ(ṙ − hṙ) + r(r − hr)ω̇(ω̇ − hω̇)

2
+ U(r),

where U(r) is the potential energy and m is the mass of the particle.
If L is independent of t, then L is a first integral. Since ω is a cyclic coordinate,

Lω̇ = r(r − hr)ω̇ is the first integral that corresponds to conservation of angular momentum
about the vertical axis.

From the discrete Legendre transform (4)

Etp
r = Lṙ = F(r)ṙ

Etp
ω = Lω̇ = r(r − hr)ω̇,

the discrete symplectic form is

ω2 = dDr ∧ dDE−t (F (r)ṙ) + dDω ∧ dDE−t (r(r − hr)ω̇).

Now, we use the discrete Euler–Lagrange equation to simulate the movement of a particle
on the surface of revolution y = cos(

√
x2 + z2) with horizontal linear velocity vh, mass m = 1

and gravitational acceleration g = 1. The continuous Euler–Lagrange equation is

(1 + sin2(r(t))) ¨r(t) = sin(r(t)) − sin(r(t)) cos(r(t))ṙ2(t).

The corresponding discrete equations are

r(t + ht ) = r(t) + htv(t)

v(t + ht )

= ht sin(r(t + ht )) − ht
2((sin(r(t + ht )))

2 − (sin(r(t)))2)v(t) + (1 + (sin(r(t + ht )))
2)v(t)

1 + (sin(r(t + ht )))2 − ht
2((sin(r(t + ht ) + ht ))2 − (sin(r(t + ht )))2)v(t)

.

Here we let ht = hr = hv for convenience.

12
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So the numerical simulation of the particle’s movement is described by following
equations:

x(t) = r(t) cos
vht

r(t)
, z(t) = r(t) sin

vht

r(t)
, y(t) = cos r(t) + 1. (8)

Choosing r(0) = 2, v(0) = 0, vh = 1 and ht = hr = hv = 0.01, we have the following
graphs:
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